最小二乘法简图
rtoax
2020-04-04 11:54:40
204
收藏
分类专栏:
【基础知识】
【算法与数学】
最后发布:2020-04-04 11:54:40
首次发布:2020-04-04 11:54:40
版权声明:本文为博主原创文章,遵循<a href="http://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener"> CC 4.0 BY </a>版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/Rong_Toa/article/details/105308065
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
rtoax
此山是我开,此树是我栽,你懂得
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
各种
最小
二
乘法
汇总(算例及MATLAB程序)
10-06
目录 1. 一般
最小
二
乘法
3 1.1. 一次计算
最小
二
乘算法 3 1.2. 递推
最小
二
乘算法 3 2. 遗忘因子
最小
二
乘算法 6 2.1. 一次计算法 6 2.2. 递推算法 6 3. 限定记忆
最小
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
“速评一下”
VS2010下 C#
最小
二
乘法
图形界面及源代码
04-27
一般社区共享的
最小
二
乘法
源代码都没有图形界面的,我这个是有的!
最小
二
乘法
的几何解释
Macer3的博客
09-12
8262
用通俗易懂的语言,从列向量的几何角度解释了
最小
二
乘法
.
拟合直线
二
次函数曲线
最小
二
乘法
javascript(p5.js,附完整代码)
华容道的博客
12-21
9054
最小
二
乘法
拟合 使用工具 p5.js 是开源的设计师工具,专攻画图 下面是文档、工具包和官网(本文只用了其中的p5.min.js) 链接:https://pan.baidu.com/s/1i5D0OpZ 密码:e04v https://p5js.org/ 拟合直线 最终效果 数学公式 ∑ni=0(x−x¯)(y−y¯)∑ni=0(x−x¯)(x−x¯)
是!“不会数据分析的,全是假程序员!”HR:太真实......(附资料,建议白嫖)
CSDN学院
11-10
1万+
数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……大到企业的销售、运营数据,产品的生产数据,交通网络数据…… 如何从海量数据中获得别人看不见的知识,如何利用数据来武装营销工作、优化产品、用户调研、支撑决策,数据分析可以将数据的价值最大化。 所以无论你做产品,运营,HR,财务,还是做研发,系统架构,在数不清的场景下,数据分析都是基本功,它不是一个职位,而是一个技能。 因此,我们才会说,学习数据分析,无论你的职场目标是什么,基本都是必须的,而且不会过时。 但是一提数据分析,很多人就
MATLAB实现
最小
二
乘法
知行流浪
04-17
17万+
最小
二
乘法
最小
二
乘法
(又称
最小
平方法)是一种数学优化技术。它通过
最小
化误差的平方和寻找数据的最佳函数匹配。 利用
最小
二
乘法
可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为
最小
。
最小
二
乘法
还可用于曲线拟合。其他一些优化问题也可通过
最小
化能量或最大化熵用
最小
二
乘法
来表达。 线性函数模型 典型的一类函数模型是线性
最小
二
乘法
的实现
OIljt12138的博客
05-10
377
最小
二
乘法
的实现
PYTHON
最小
二
乘法
简单作图
weixin_41819529的博客
09-11
722
PYTHON
最小
二
乘法
作图
最小
二
乘法
原理视频见:https://open.163.com/movie/2010/11/P/U/M6V0BQC4M_M6V2AOJPU.html 求离散点的直线拟合 通过公式 X=A.T*B/A.T*A 解出 C,D 再做直线图 代码块 least square method.py import matplotlib...
机器学习笔记
二
:线性回归与
最小
二
乘法
谢小小XH
11-21
2万+
这篇笔记会将几本的线性回归概念和
最小
二
乘法
。其他的会在下一篇扩展。 在机器学习中,一个重要而且常见的问题就是学习和预测特征变量(自变量)与响应的响应变量(应变量)之间的函数关系 这里主要讨论线性函数:在特征和响应之间学习线性关系。 这篇文章是入门基本概念的一片文章,会引导你关于一些模型的基本过程是怎样的。这里需要一些python和数学的基础知识。一.线性建模以奥运会男子100米金牌需要的时间数
最小
二
乘法
多项式拟合 C语言实现(引用)(附echarts画图代码)
u012565113的博客
06-28
433
C++多阶拟合(附echarts画图代码)细微修改,更通用 细微修改,更通用 原文章 https://blog.csdn.net/sunshineacm/article/details/79069561 /* 本实验根据数组x[], y[]列出的一组数据,用
最小
二
乘法
求它的拟合曲线。 近似解析表达式为y = a0 + a1 * x + a2 * x^2 + a3 * x^3;(三阶) */ #include <stdio.h> #include <math.h> #
半小时学习
最小
二
乘法
小楼吹彻玉笙寒
04-20
3万+
这里是我的个人网站: https://endlesslethe.com/easy-to-learn-ols.html 有更多总结分享,最新更新也只会发布在我的个人网站上。排版也可能会更好看一点=v= 前言
最小
二
乘法
在统计学的地位不必多言。本文的目的是全面地讲解
最小
二
乘法
,打好机器学习的基础,后面的系列文章会继续讲解
最小
二
乘的正则化。 至于非线性
最小
二
乘和广义线性模型,如果以后有时间...
最小
二
乘法
原理理解
Hello-Adam
05-04
8万+
概念:
最小
二
乘法
是一种熟悉而优化的方法。主要是通过
最小
化误差的平方以及最合适数据的匹配函数。 作用:(1)利用
最小
二
乘法
可以得到位置数据(这些数据与实际数据之间误差平方和
最小
)(2)也可以用来曲线拟合 实例讲解:有一组数据(1,6),(3,5),(5,7),(6,12),要找出一条与这几个点最为匹配的直线 : y = A + Bx 有如下方程: 6 = A + B 5 = A + 3B ...
技术破局:AI程序员2021如何跳出舒适圈?!
CSDN学院
01-05
1万+
近日,IDC调研机构与浪潮联合发布《2020-2021 中国人工智能计算力发展评估报告 》。报告显示,预计2020 年中国AI市场规模将达到 62.7亿美元,2019~2024 年的年复合增长率为 30.4%,中国成为全球各个区域里面AI的投资发展最快的一个国家。 报告从AI算力产业发展趋势、市场规模、区域算力分布和行业AI算力保有程度等多个角度进行全面综合评估,旨在评估中国人工智能发展的现状,为推动产业AI化发展提供极具价值的参考依据和行动建议。 同时小编注意到据 BOSS直聘发布的《2020人才资.
到底什么是
最小
二
乘法
yuxiaoxi21的博客
05-09
2万+
http://blog.sina.com.cn/s/blog_7445c2940102wjz8.html#commentComment
最小
二
乘法
,又是一个即熟悉又陌生的名字。对于学工科的我,简直就是听着
最小
二
乘长大的(汗。。。)。但是,之前碰到要用
最小
二
乘法
的时候,我采取的办法都是拿来主义(抄。。。),并没有系统的了解一下什么是
最小
二
乘法
。包括
最小
二
乘这个叫法,也从来都不理解(一直以为是一个外
最小
二
乘法
的最简单的几何解释,非常直观!
qq_30339595的博客
12-11
3197
最小
二
乘法
就是解一个无解的线性方程组 要找到解,就要找到a1,a2的一个线性组合,使得组合后的向量刚好等于b。可惜的是任何的a1和a2线性组合,只可能出现在a1,a2所在的平面S上(这个平面S就是传说中的向量空间),但是向量b不在平面S上,如下图。不可能找到解,怎么办呢? 无解 —>解出一个最接近的解 找不到完美的解,就只能找到一个最接近的解。所以我们想在平面S上找一个最接近向量b的向量...
多元
最小
二
乘问题
zhulf0804的博客
08-26
1341
多元
最小
二
乘问题 假设我们有一组训练集,对每一个样例我们有很多输出,所以在这里,并不是一个实数,而是一个有个元素的向量。我们希望使用一个线性模型来预测输出结果,设 , 这里。 1)代价函数 , 下面我们将代价函数写成矩阵—向量符号的形式。 设 则: , 经过观察,发现的值即为矩阵元素的平方和的一半,而我们知道(容易证明)矩阵的元素的平方和等于,所以
数值分析--线性多项以及多元
最小
二
乘拟合python3实现并画图
自深深处
10-15
2987
一、基础理论: 曲线拟合:字面意思 应用:预测和检验 方法:两种
最小
二
乘法
(数值不精确) 插值法(数值精确,曲线过每个点) 基础数学理论: 泰勒级数(预测下一个函数值),有限差商,均值,标注差(方差开根),残差平方和,正态分布,置信区间 数据特性: ①数据中心-算术平均 ②分散度-标准差,方差,方差系数(标准差/均值) ③数据分布:正态
最小
二
乘回归之线性回归: 首先直线/曲线拟
曲线画图
最小
二
乘拟合 转换成excel MFC
12-08
1.数据曲线作图,使用
最小
二
乘法
进行多项式拟合。 2.可以提取两根曲线间的偏移量:) 3.不需要任何别的软件支持。 4.有快速将文本格式数据转换成excel格式功能 4.具体使用方法可以看程序的“帮助
python实现
最小
二
乘法
回归模拟及绘图
Da___Vinci的博客
03-21
1万+
目录 准备工作 回归计算 模拟结果检测 均方差检验 有噪声数据回归 多维回归 准备工作 首先通过linspace函数生成固定区间,然后定义一个函数,有三角函数和线性函数组成 import numpy as np import matplotlib.pyplot as plt def f(x): return np.sin(x) + 0.5*x x = np.linsp...
©️2020 CSDN
皮肤主题: 酷酷鲨
设计师:CSDN官方博客
返回首页